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Abstract

Background: Over the past years, antibiotic growth promoter had been restricted in animal husbandry production
in many countries because of antimicrobial resistance and foodborne antibiotic residues. However, the problems of
poor intestinal health and low growth efficiency of piglets have not been solved completely in an antibiotic-free
diet, and it is urgent to explore alternatives to antimicrobial growth promoters.

Methods: Here, a total of 532 weaned pigs were assigned to one of 4 treatments, the low amino acid (AA) level
diet (d 1 to d 14 is 1.35%, d 15 to d 42 is 1.25%) (Low AA), the low AA level diet supplementation with a carvacrol–
thymol blend (50 mg carvacrol and 50 mg thymol/kg of diet) (CB) (Low AA+CB), the high AA level diet (d 1 to d 14
is 1.50%, d 15 to d 42 is 1.40%) (High AA), and the high AA level diet supplementation with a CB (High AA+CB),
respectively. Then we measured growth performance and intestinal health indicators of weaned pigs.

Results: Results showed that high AA level significantly reduced plasma urea nitrogen, plasma Interleukin-6 (IL-6)
and fecal lipocalin-2 contents (P < 0.05), significantly increased the relative abundance of fecal Lactobacillus and
Enterococcus, and had a trend to increase the fecal secretory immunoglobulin A (sIgA) and mucin 2 (MUC 2)
contents (P < 0.05) in piglets, thereby alleviating the diarrhea of piglets and reducing the feed conversion ratio
(FCR) of piglets during d 1~14 after weaning. Dietary supplementation with CB significantly increased the activity of
plasma antioxidant enzymes T-SOD and GSH-px (P < 0.05), while significantly reduced plasma malondialdehyde
(MDA), plasma interleukin-1β (IL-1β), plasma endotoxin and D-lactic acid contents (P < 0.05). Meanwhile, CB
significantly decreased fecal lipocalin-2 contents and the abundance of fecal Escherichia coli (P < 0.05). Thus, we
hypothesis that dietary supplementation with CB significantly increased the average daily gain (ADG) of piglets (P <
0.05) during d 1~14 after weaning through promoting intestinal health.
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Conclusion: These results suggest that high AA level and dietary supplementation with CB improved the growth
performance of weaned pigs in an antibiotic-free diet by improving AA metabolism and intestinal antioxidant
capacity.

Keywords: Amino acids, Antioxidant capacity, Carvacrol and thymol, Intestinal health, Plant extracts, Weaned pigs

Introduction
Antibiotics are usually used to prevent and treat animal
diseases which play an important role in animal hus-
bandry production [1]. There are approximately 75% of
antibiotics used in animal husbandry production world-
wide since antibiotics were discovered to accelerate pig
and chicken growth [2]. In recent years, many countries
have realized that the abuse of antibiotic had led to anti-
microbial resistance and foodborne antibiotic residues,
and began to implement antibiotic free feeding [3]. Fol-
lowing the European Union and the United States, China
began to ban antimicrobial growth promoters from July
1, 2020. However, the problems of poor intestinal health
and low growth efficiency of weaned pigs have not been
solved completely in an antibiotic-free diet [4]. There-
fore, it is urgent to explore alternatives to antimicrobial
growth promoters.
Dietary AA are metabolized in the small intestine, and

about one third of the dietary essential AA are consumed
through the first pass metabolism of the intestine [5, 6].
Porcine small intestine bacteria can quickly utilize lysine,
arginine, threonine, and glutamic acid [7, 8]. Slightly less
than lethal doses of antibiotic could significantly reduce
total bacterial abundance [9]. Thus, the increase in the
abundance of microbes induced by antibiotic-free diet in
the small intestine may lead to an increase in AA require-
ments. Moreover, the requirement of lysine or methionine
as energy sources or to support the immune system may
also be significantly higher than that in an antibiotic-free
diet [10]. Hence, high AA level may be an effective meas-
ure to improve the growth performance of weaned pigs
fed with antibiotic-free diet [10–12].
Carvacrol and thymol are both phenolic monoterpe-

noids, which are extracted form origanum vulgare. Car-
vacrol and thymol have been proven to exert a variety of
physiological activities, such as anti-microbial, anti-
inflammatory, anti-oxidative, immune modulation, and
improving intestinal morphology and intestinal mucosal
integrity [13–16]. Thus, carvacrol and thymol are widely
used as a substitute for antibiotics in animal diets [16–
18]. Our previous studies also found that dietary supple-
mentation with 100mg/kg CB can alleviate intestinal
oxidative stress, increase the abundance of beneficial
bacteria, and decrease the abundance of harmful bacteria
in weaned pigs [16].
Here, we hypothesized that high AA level and dietary

supplementation with CB could effectively control the

diarrhea of weaned pigs and improve the growth per-
formance of weaned pigs. To test the hypothesis, we
assigned 532 weaned pigs to 4 treatments (Low AA, Low
AA + carvacrol–thymol blend, High AA, High AA +
carvacrol–thymol blend) for 42 d after weaning respect-
ively, and collected the plasma and fecal at d 7, 14, 42 to
test effects of different AA levels and a carvacrol–thymol
blend on growth performance and intestinal health of
weaned pigs.

Methods
Animals and experimental design
A total of 532 weaned pigs (Duroc × Large White ×
Landrace) with an initial BW of 7.74 ± 1.23 kg were ran-
domly allocated to 4 groups with four-five pens (7.1 m ×
4.7 m) per treatment and 28 weaned pigs per pen, the
stocking density is 1.19 m2/pig. Porcine circovirus
(PCV), pseudorabies virus (PRV), classical swine fever
(CSF), porcine reproductive and respiratory syndrome
virus (PRRS) vaccine were injected at 3, 18 and 22 d re-
spectively. The experiment was designed with 2 × 2 fac-
tors including a low level AA diet (Low AA), a low level
AA diet supplemented with carvacrol–thymol blend (50
mg/kg carvacrol and 50mg/kg thymol of diet) (Low
AA+CB), a high level AA diet (High AA), a high level
AA diet supplemented with carvacrol–thymol blend (50
mg/kg carvacrol and 50mg/kg thymol of diet) (High
AA+CB) for 42 d. The level of SID Lys of low AA group
from d 1 to d 14 is 1.35%, and then change to 1.25%
from d 15 to d 42. The level of SID Lys of high AA
group from d 1 to d 14 is 1.50%, and then change to
1.40% from d 15 to d 42. The carvacrol–thymol blend
was provided by Novus International Inc. (St. Louis,
MO, USA) as Next Enhance 150® (1:1, Thymol:Carva-
crol). According to the manufacturer, Next Enhance 150
contains 50% encapsulated active components (thymol
and carvacrol) but no other nutrients. The composition
and nutrient level of the basal diet are shown in Tables
1 and 2. All of the piglets were given ad libitum access
to water and feed.

Determinations of growth performance and diarrhea
The body weight (BW) of the pigs were recorded at d 1,
d 14 and d 42; Feed intake of weaned pigs was recorded
every day, and average daily feed intake (ADFI), average
daily gain (ADG), and FCR were calculated per pen. The
diarrhea rate was recorded during d 1~14 after weaning,
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Table 1 Ingredients and nutrient composition of diet during 1
~ 14 d

Composition, % Low AA High AA

CB(−) CB(+) CB(−) CB(+)

Prepuffed raw materials 53.08 53.03 54.16 54.11

Fermented soybean meal 8.90 8.90 7.40 7.40

Yeast 2.08 2.08 2.08 2.08

Fermented products 6.67 6.67 6.67 6.67

Low protein whey powder 12.50 12.50 12.50 12.50

High protein whey powder 2.78 2.78 2.78 2.78

Glucose 2.78 2.78 2.78 2.78

Sucrose 2.50 2.50 2.50 2.50

Soybean oil 2.60 2.60 2.30 2.30

Phospholipid powder 1.50 1.50 1.50 1.50

Limestone 0.29 0.29 0.29 0.29

Dicalcium phosphate 0.67 0.67 0.69 0.69

Sodium chloride 0.23 0.23 0.23 0.23

Lysine, 98% 0.57 0.57 0.8 0.8

Methionine 0.25 0.25 0.35 0.35

Threonine 0.31 0.31 0.42 0.42

Tryptophan 0.10 0.10 0.14 0.14

Valine 0.18 0.18 0.30 0.30

Isoleucine 0.09 0.09 0.19 0.19

ZnO 0.20 0.20 0.20 0.20

Activate® DA 0.50 0.50 0.50 0.50

Montmorillonite 0.40 0.40 0.40 0.40

Feed antifungal agent 0.05 0.05 0.05 0.05

Choline chloride 0.12 0.12 0.12 0.12

Food attractant 0.05 0.05 0.05 0.05

Premix* 0.60 0.60 0.60 0.60

Carvacrol and thymol 0.05 0.05

Total 100 100 100 100

Nutrient content

Digestible energy, kcal/kg 3463.00 3463.00 3458.60 3458.60

Crude protein, % 18.00 18.00 17.98 17.98

Digestible lysine, % 1.35 1.35 1.50 1.50

Digestible methionine, % 0.62 0.62 0.71 0.71

Digestible threonine, % 0.88 0.88 0.97 0.97

Digestible tryptophan, % 0.27 0.27 0.30 0.30

Digestible valine, % 0.87 0.87 0.96 0.96

Ca, % 0.50 0.50 0.49 0.49

Available P, % 0.36 0.36 0.36 0.36

*Provided per kg of diet: Vitamin E 200 mg, Vitamin C 350 mg, piglet
multidimensional 350 mg, piglet micromine 3000 mg, protein enzyme
(Cibenza® DP100) 100 mg, phytase 200 mg, microecological preparations 300
mg, antiseptic 1000 mg, antioxidants 200mg, flavour 800 mg, sweetener 300
mg, sodium butyrate 1500 mg

Table 2 Ingredients and nutrient composition of diet during 15
~ 42 d

Composition, % Low AA High AA

CB (−) CB(+) CB(−) CB(+)

Corn 30.40 30.35 31.40 31.35

Prepuffed raw materials 33.04 33.04 32.99 32.99

Pretreatment raw materials 7.00 7.00 7.00 7.00

Soybean meal, 46% CP 5.40 5.40 4.00 4.00

Fermented soybean meal 8.00 8.00 8.00 8.00

Brewer’s yeast hydrolysate 1.39 1.39 1.39 1.39

Low protein whey powder 5.56 5.56 5.56 5.56

High protein whey powder 1.39 1.39 1.39 1.39

Cheese whey 0.69 0.69 0.69 0.69

Soybean oil 1.90 1.90 1.60 1.60

Phospholipid powder 0.50 0.50 0.50 0.50

Limestone 0.80 0.80 0.80 0.80

Dicalcium phosphate 0.82 0.82 0.84 0.84

Sodium chloride 0.39 0.39 0.39 0.39

Lysine, 98% 0.58 0.58 0.82 0.82

Methionine 0.17 0.17 0.27 0.27

Threonine 0.26 0.26 0.38 0.38

Tryptophan 0.08 0.08 0.12 0.12

Valine 0.13 0.13 0.25 0.25

Isoleucine 0.03 0.03 0.14 0.14

Feed antifungal agent 0.05 0.05 0.05 0.05

Montmorillonite 0.40 0.40 0.40 0.40

Choline chloride 0.1 0.1 0.1 0.1

Food attractant 0.05 0.05 0.05 0.05

Activate® DA 0.27 0.27 0.27 0.27

Premix * 0.60 0.60 0.60 0.60

Carvacrol and thymol 0.05 0.05

Total 100 100 100 100

Nutrient content

Digestible energy, kcal/kg 3427.70 3427.70 3425.10 3425.10

Crude protein, % 17.99 17.99 17.98 17.98

Digestible lysine, % 1.25 1.25 1.40 1.40

Digestible methionine, % 0.49 0.49 0.58 0.58

Digestible threonine, % 0.81 0.81 0.91 0.91

Digestible tryptophan, % 0.25 0.25 0.28 0.28

Digestible valine, % 0.83 0.83 0.92 0.92

Ca, % 0.60 0.60 0.59 0.59

Available P, % 0.34 0.34 0.34 0.34

*Provided per kg of diet: Vitamin E 200 mg, Vitamin C 350 mg, piglet
multidimensional 350 mg, piglet micromine 3000 mg, protein enzyme
(Cibenza® DP100) 100 mg, phytase 200 mg, microecological preparations 300
mg, antiseptic 1000 mg, antioxidants 200mg, flavour 800 mg, sweetener 300
mg, sodium butyrate 1500 mg
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and the severity of diarrhea was evaluated by using the
fecal consistency score system. In brief, scores were 0,
firm, normal; 1, pasty; slight diarrhea; 2, semi-liquid,
moderate diarrhea; or 3, liquid and unformed, severe
diarrhea [19, 20]. The diarrhea rate was calculated as fol-
lows: Diarrhea rate (%) = (number of diarrhea weaned
pigs)/(total number of experimental weaned pigs × ex-
perimental time (d)) × 100%. Diarrhea index = total fecal
scores/total number of experimental weaned pigs.

Sample collections
At d 7 and 14, 2 pigs per pen were randomly selected
for blood samples via the anterior vena cava puncture
(tubes containing heparin sodium) and plasma was ob-
tained after centrifugation at 900 × g for 10 min. The
fresh fecal samples of the same weaned pigs were col-
lected at the same time. Samples were frozen at − 80 °C
until analysis.

Plasma and fecal chemical analysis
0.2 g of feces was weighed and put in the 1.5-mL EP
tube, 0.8 mL PBS was added, and it was homogenized on
the mixer. After that, it was centrifuged at 400 × g at
4 °C for 5 min, and the supernatant was collected.
The activities of total superoxide dismutase (T-SOD),

glutathione peroxidase (GSH-px), the plasma concentra-
tions of malondialdehyde (MDA), antioxidative capacity
(T-AOC) and plasma urea nitrogen (PUN) were detected
using colorimetric methods with a spectrophotometer
(Biomate 5, Rochester, NY, USA). The assays were car-
ried out using commercial kits (Nanjing Jiancheng Bio-
engineering Institute, Nanjing, Jiangsu, China) and their
corresponding procedures. The assays were performed
in triplicate.
The level of plasma tumor necrosis factor α (TNF-α),

IL-1β, IL-6, Interleukin 8 (IL-8) and the level of fecal
Lipoprotein 2 were measured to evaluate the systemic
and intestinal inflammatory response. The level of
plasma endotoxin, D-lactate, diamine oxidase (DAO),
and the level of fecal sIgA (P-KMLJ939189), MUC 2
were measured to evaluate the gut barrier function of
weaned pigs. Pig TNF-α ELISA kit (2P-KMLJ942147p),
IL-1β ELISA kit (2P-KMLJ941952p), IL-6 ELISA kit (P-
KMLJ941958p), IL-8 ELISA kit (2P-KMLJ941959p),
Lipoprotein 2 (2P-KMLJ942831p), Endotoxin (2P-
KMLJ942056p), DAO (2P-KMLJ942522p), D-lactate (2P-
KMLJ942838p), sIgA (2P-KMLJ941995p), MUC 2 (2P-
KMLJ942137p) were purchased from Nanjing Camilo
biological engineering Co., Ltd. (Camilo, Nanjing,
China). Briefly, 10 μL of plasma or fecal supernatant was
added in the microplate. Add HRP-antibody solution
and incubate at 37 °C. Then wash and add substrate so-
lution. Incubate at 37 °C in the dark. Add stop solution
and measure absorbance at 450 nm.

Determinations of fecal SCFAs
Fecal concentrations of short chain fatty acids (SCFAs)
were determined as previously described [21], with slight
modifications. In brief, approximately 0.1 g of fecal sam-
ples (n = 8–10/group) was placed into 1.5-mL centrifuge
tubes, diluted with 1mL 0.5% of phosphoric acid solu-
tion and homogenized. Then, the samples were centri-
fuged at 14,400 × g for 10 min to obtain the supernatant.
The supernatant was extracted with equal volume of
ethyl acetate, and precipitated in refrigerator at − 20 °C.
Then, the samples were centrifuged at 14,400 × g for 10
min to obtain the supernatant. The concentrations of
SCFAs in the supernatant were determined using gas
chromatography (Thermo, Waltham, USA). All proce-
dures were performed in duplicate.

DNA extraction and real-time quantitative polymerase
chain reaction (PCR)
Total microbial DNA was extracted and purified from
fecal samples on d 14 and 42 using a QIAamp DNA
stool kit (TIANGEN, Beijing, China) according to the
manufacturer’s instructions. The quantity and quality of
DNA was assessed using a NanoDropfi ND-1000 Spec-
trophotometer. Real-time quantitative polymerase chain
reaction (PCR) analyses were performed by CFX Con-
nectTM Real-time PCR Detection System (Bio-Rad,
Hercules, USA) in a final reaction volume of 10 μL con-
taining 4.4 μL of template DNA (50 ng/μL), 5 μL iTaq™
Universal SYBR Green Supermix (Bio-Rad, Hercules,
USA) and 0.3 μL of each of forward and reverse primers.
Thermal cycling conditions involved an initial denatur-
ation step at 95 °C for 10 min followed by 40 cycles of
denaturation at 95 °C for 15 s and 65 °C for 1 min [22].
Dissociation analyses of the PCR product were per-
formed to confirm the specificity of the resulting PCR
products. The primers used for the real-time PCR detec-
tion of selected genes are listed in Table 3.

Statistical analysis
All the data were analyzed using the general linear
model (GLM) procedure of the Statistical Analysis. Sys-
tem (SAS 9.2 SAS Institute Inc., Cary, NC, USA). Data
of the animal trial were statistically analyzed using the
two-factor ANOVA to determine the main effects of
dietary AA level, CB supplementation, and their interac-
tions. If there was a main effect or the interaction was
significant, the Bonferroni t-test was performed for post
hoc comparison of means. The χ2 test was used to test
for diarrhea rate. Data were expressed as means ± stand-
ard error of the mean (SEM). Level of significance was
set at P < 0.05, whereas 0.05 < P < 0.1 was considered a
trend towards significance.
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Results
Growth performance and diarrhea
The growth performance and diarrhea rate of weaned
pigs are shown in Table 4. There was not a signifi-
cant interaction effect between AA level and CB sup-
plementation on the growth performance (P > 0.05).
During d 1~14 after weaning, high AA level signifi-
cantly decreased ADFI and FCR of weaned pigs (P <

0.05). Dietary supplementation with CB significantly
increased the final weight, ADG, ADFI and average
daily lysine intake (ADLysI) (P < 0.05). There was a
significant interaction effect between AA level and CB
supplementation on the diarrhea rate (P < 0.05). Dur-
ing 15~42 d and 1~42 d after weaning, there was no
significant difference in growth performance among
different treatment groups.

Table 3 Primers used for absolute quantitative real-time polymerase chain reaction (PCR)

Target group Sequence of primers, 5′ to 3′ Size, bp

Total bacteria Forward: GTGSTGCAYGGYYGTCGTCA 146

Reverse: ACGTCRTCCMCNCCTTCCTC

Lactobacillus spp. Forward: AGCAGTAGGGAATCTTCCA 341

Reverse: CACCGCTACACATGGAG

Enterococcus Forward: CCCTTATTGTTAGTTGCCATCATT 144

Reverse: ACTCGTTGTACTTCCCATTGT

Escherichia coli Forward: CATGCCGCGTGTATGAAGAA 96

Reverse: CGGGTAACGTCAATGAGCAAA

Bifidobacterium genus Forward: TCGCGTCTGGTGTGAAAG 243

Reverse: CCACA TCCAGCATCCAC

Table 4 Growth performance of piglets

Items Low AA High AA SEM P-value

CB (−) CB(+) CB(−) CB(+) AA CB AA×CB

Number of pens 5 5 4 5

1 d BW, kg 7.74 7.75 7.74 7.77 0.01 0.60 0.40 0.91

14 d BW, kg 10.85 11.29 11.07 11.56 0.09 0.14 < 0.01 0.87

42 d BW, kg 29.38 29.34 28.87 29.14 0.32 0.56 0.85 0.80

1 ~ 14 d

ADG, g/d 226.49 255.57 236.61 268.09 6.33 0.32 0.01 0.91

ADFI, g/d 340.91 372.02 311.59 343.63 8.41 0.04 0.03 0.97

ADLysI, g/d 4.60 5.02 4.67 5.15 0.10 0.58 0.02 0.87

FCR 1.51 1.46 1.32 1.29 0.03 < 0.01 0.31 0.91

Diarrhea rate, % 7.31 a 5.78 ab 5.51 ab 5.24 b 0.47 0.03 0.07 0.03

Diarrhea index 0.18 ± 0.04 0.15 0.13 0.12 0.01 0.09 0.64 0.46

15 ~ 42 d

ADG, g/d 657.21 642.87 632.62 628.98 8.28 0.28 0.61 0.76

ADFI, g/d 899.44 905.25 899.84 888.96 16.46 0.82 0.94 0.81

ADLysI, g/d 11.24 11.32 12.6 12.45 0.25 0.01 0.93 0.80

FCR 1.37 1.41 1.42 1.41 0.01 0.98 0.72 0.39

1 ~ 42 d

ADG, g/d 515.35 514.56 501.96 508.79 6.47 0.50 0.83 0.79

ADFI, g/d 713.27 727.51 703.76 707.19 12.92 0.57 0.74 0.84

ADLysI, g/d 7.92 8.17 8.64 8.80 0.15 0.03 0.48 0.89

FCR 1.38 1.41 1.40 1.39 0.01 0.98 0.72 0.39

All results are presented as mean ± SEM. AA Amino acid effect, CB a carvacrol–thymol blend effect, AA×CB interaction effect of amino acid and a carvacrol–thymol
blend, ADLysI average daily lysine intake. P < 0.05 significant difference, P < 0.01 extremely significant difference
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The content of plasma urea nitrogen
As shown in Fig. 1, at d 14 after weaning, there was an
interaction between AA level and CB supplementation
on the content of PUN in weaned pigs (P < 0.05), which
showed that high level AA dietary supplemented with
CB significantly reduced the content of PUN (P < 0.05),
but not compared to low AA (P > 0.05). At d 7 after
weaning, high AA level significantly (P < 0.05) reduced
the content of PUN.

Antioxidant activity and lipid peroxidation in plasma
As shown in Table 5. There was no interaction between
AA level and a carvacrol–thymol blend on antioxidant
enzyme activity and MDA content in plasma of weaned
pigs. Dietary supplementation with CB significantly (P <
0.05) increased the plasma T-SOD activity at d 7 after
weaning and GSH-px activity at d 14 after weaning, and
significantly decreased the plasma MDA content at d 7
and d 14 after weaning (P < 0.05). Different AA levels
had no significant (P > 0.05) effects on antioxidant en-
zyme activity and MDA content in plasma of weaned
pigs.

Level of inflammatory factors in plasma and feces
As shown in Fig. 2. There was no interaction between
AA level and a carvacrol–thymol blend on the content
of inflammatory factors in weaned pigs. High AA level
significantly reduced the content of plasma IL-6 and
fecal lipoprotein-2 at d 14 after weaning (Fig. 2C & E)
(P < 0.05); Dietary supplementation with CB significantly

reduced the content of fecal lipoprotein 2 at d 7 after
weaning and plasma IL-1β at d 14 after weaning (Fig. 2B
& E) (P < 0.05).

Selected fecal bacterial populations
As shown in Fig. 3. At d 14 after weaning, increasing
dietary AA level significantly increased the relative abun-
dance of fecal Enterococcus and Lactobacillus (P < 0.05)
(Fig. 3B & C); Dietary supplementation with CB signifi-
cantly reduced the relative abundance of fecal Escheri-
chia coli (P < 0.05) (Fig. 3A). Whereas, there are not
significant effects on selected fecal bacterial populations
with high AA level and dietary supplementation with CB
at d 7 after weaning (P > 0.05) (Fig. 3).

Fecal SCFAs
As shown in Fig. 4. There was no interaction between
AA level and a carvacrol–thymol blend on the content
of SCFAs in piglet feces. High AA level tended to in-
crease the content of isovaleric acid and total branched
chain fatty acids (isobutyric acid and isovaleric acid) at d
14 after weaning (Fig. 4B) (P < 0.1). Dietary supplemen-
tation with CB had no significant (P > 0.05) effects on
the content of SCFAs in piglet feces (Fig. 4).

Biomarkers of intestinal barrier function
The biomarkers of intestinal barrier function were
shown in Fig. 5. At d 7 after weaning, there was a trend
of interaction between AA level and a carvacrol–thymol
blend on endotoxin content in plasma (Fig. 5A) (P < 0.1).

Fig. 1 Plasma urea nitrogen content in piglets. All results are presented as mean ± SEM (n = 8–10/group). AA: Amino acid effect; CB: a carvacrol–
thymol blend effect, AA×CB: interaction effect of amino acid and a carvacrol–thymol blend. P < 0.05 significant difference, P < 0.01 extremely
significant difference
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Dietary supplementation with CB significantly decreased
plasma endotoxin at low AA level (P < 0.05). High AA
level had a tendency to increase fecal sIgA and fecal
MUC 2 contents at d 7 after weaning (Fig. 5D & E) (P <
0.1). Dietary supplementation with CB significantly re-
duced plasma endotoxin and D-lactic acid content at d
7, 14 and d 7 after weaning respectively (P < 0.05) (Fig.
5A & B). At d 14 after weaning, there was an interaction
between AA level and a carvacrol–thymol blend on
plasma endotoxin and D-lactic acid content (Fig. 5A &
B) (P < 0.05). Low level of AA diet supplemented with
CB significantly reduced the content of endotoxin in
plasma at d 14 after weaning (P < 0.01) (Fig. 5A). Dietary

supplementation with CB had a tendency to increase the
content of sIgA in feces at d 14 after weaning (P = 0.05)
(Fig. 5D).

Discussion
Essential AA are precursors of many bioactive sub-
stances and play an important role in promoting the
growth of animals [23, 24]. High AA level significantly
reduced ADFI and FCR of weaned pigs, which may be
related to the transport of AA. Studies have shown that
reducing dietary lysine level inhibited the expression of
lysine transporter and the transport of lysine in the in-
testine, which promoted the feed uptake of piglets [25].

Table 5 Antioxidant enzyme activity and MDA content in plasma of piglets

Times Items Low AA High AA SEM P-value

CB (−) CB (+) CB (−) CB (+) AA CB AA×CB

Number of pens 10 10 8 10

7 d T-SOD, U/mL 25.94 37.39 33.18 40.07 1.83 0.15 0.01 0.50

GSH-px, μmol/L 1023.54 992.86 998.93 935.54 20.77 0.34 0.27 0.70

MDA, nmol/mL 6.96 5.81 7.33 6.52 0.24 0.26 0.04 0.72

T-AOC, U/mL 0.76 0.75 0.75 0.79 0.01 0.38 0.59 0.12

14 d T-SOD, U/mL 42.37 38.33 35.58 37.69 1.28 0.16 0.71 0.24

GSH-px, μmol/L 576.94 644.94 610.51 694.28 16.94 0.20 0.02 0.81

MDA, nmol/mL 7.35 5.52 7.52 6.77 0.27 0.17 0.02 0.30

T-AOC, U/mL 0.71 0.71 0.71 0.7 0.01 1.00 0.33 0.83

All results are presented as mean ± SEM. AA Amino acid effect, CB a carvacrol–thymol blend effect, AA×CB interaction effect of amino acid and a carvacrol–thymol
blend. P < 0.05 significant difference, P < 0.01 extremely significant difference

Fig. 2 Effects of different treatments on inflammatory factors in piglets. A The content of TNF-α in plasma; B the content of IL-1β in plasma; C
the content of IL-6 in plasma; D the content of IL-8 in plasma; E the content of Lipocalcin-2 in fecal. All results are presented as mean ± SEM (n =
8–10/group). AA: Amino acid effect; CB: a carvacrol–thymol blend, AA×CB: interaction effect of amino acid and a carvacrol–thymol blend. P < 0.05
significant difference, P < 0.01 extremely significant difference
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Fig. 3 Effects of different treatments on specific microorganisms in piglet feces. Relative abundance of A E. coli, B Enterococcus, C Lactobacillus
and D Bifidobacterium in piglet feces. All results are presented as mean ± SEM (n = 8–10/group). AA: Amino acid effect; CB: a carvacrol–thymol
blend effect, AA×CB: interaction effect of amino acid and a carvacrol–thymol blend. P < 0.1 indicates the tendency of significant difference, P <
0.05 significant difference

Fig. 4 Concentrations of SCFAs in piglet feces. A The content of SCFAs in feces of piglets on d 7 after weaning; B the content of SCFAs in feces
of piglets on d 14 after weaning. All results are presented as mean ± SEM (n = 8–10/group). AA: Amino acid effect; CB: a carvacrol–thymol blend
effect, AA×CB: interaction effect of amino acid and a carvacrol–thymol blend. P < 0.1 indicates the tendency of significant difference
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The decrease of FCR during the first two weeks post-
weaning may be related to the decrease of PUN content.
PUN is an important index to evaluate the nitrogen
utilization rate, the lower level of PUN, the higher the
nitrogen utilization rate of animal body in protein syn-
thesis [26, 27]. Therefore, increasing the level of AA may
improve the FCR of weaned pigs by increasing the
utilization rate of AA.
Our results showed that dietary supplementation CB

significantly increased BW, ADG, ADLysI and ADFI of
weaned pigs, but had no significant effect on FCR of
weaned pigs. We hypothesis dietary supplementation CB
decreased the content of PUN to elevated the utilize of
AA in piglet thus to promote the growth perform-
ance. Other studies also demonstrated that the con-
tent of PUN in weaned pigs was significantly reduced
by feeding carvacrol and thymol diets [18]. In
addition, this study found that dietary supplementa-
tion CB improved the growth performance of weaned
pigs primarily in the early stage of the experiment,
probably because the effects of weaning on the intes-
tinal structure of weaned pigs was mainly in the early
stage of weaning [28].
Early weaning pigs are affected by diet changes, envir-

onmental, physiological and psychological factors, are
prone to slow growth, diarrhea, intestinal barrier func-
tion damage and other weaning stress problems, which
may have negative effects on the health and growth of

weaned pigs [29–31]. The increasing content of plasma
endotoxin and D-lactic acid are a marker of increased
intestinal permeability. Endotoxin as a component of the
exterior cell wall of Gram-negative bacteria, the abun-
dance of endotoxin in plasma presents enhanced intes-
tinal permeability and poor intestinal barrier function
[32, 33]. D-lactic acid is a metabolic product of bacterial
fermentation, which can be produced by a variety of in-
testinal bacteria. When intestinal mucosal permeability
increases, a large amount of D-lactic acid produced by
intestinal bacteria enters the blood through the damaged
mucosa, increasing the serum D-lactic acid level [34, 35].
In the present study, supplementation with CB de-
creased plasma concentrations of endotoxins and D-
lactate at d 7, 14 and d 7 after weaning respectively. At d
14 after weaning, there was an interaction between AA
level and a carvacrol–thymol blend on plasma endotoxin
and D-lactic acid content. These results indicated that
the effects of CB on intestinal permeability of weaned
pigs are not consistent at different AA levels, and there
may be obvious differences of mechanisms.
Adequate AA intake is particularly important for intes-

tinal physiology of weaned pigs [36]. We found that high
AA level significantly reduced fecal lipoprotein-2 con-
tent, and had a tendency to increase fecal MUC 2 and
sIgA. Fecal Lipocalin 2 is a biomarker for intestinal in-
flammation [37]. Mucin secreted by goblet cells, espe-
cially MUC 2 plays an important role in maintaining

Fig. 5 Effects of different treatments on intestinal barrier function in piglets. A The content of endotoxin in plasma; B the content of D-lactic acid
in plasma; C the content of DAO in plasma; D the content of secretory immunoglobulin A content in fecal; E the content of MUC 2 in fecal. All
results are presented as mean ± SEM (n = 8–10/group). AA: Amino acid effect; CB: a carvacrol–thymol blend effect, AA×CB: interaction effect of
amino acid and a carvacrol–thymol blend. P < 0.1 indicates the tendency of significant difference, P < 0.05 significant difference, P < 0.01
extremely significant difference
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intestinal mucosal barrier function [38]. In the small in-
testine, sIgA can directly reflect the immune barrier
function of intestinal mucosa [39]. These results indi-
cated that dietary AA levels might alleviate the intestinal
inflammatory reaction, improved the intestinal immune
and chemical barrier function of weaned pigs.
Intestinal oxidative stress and inflammatory response

during weaning are one of the reasons for the impairment
of intestinal barrier function [40, 41]. The results showed
that dietary supplementation with CB significantly allevi-
ated the oxidative stress induced by weaning. Carvacrol
and thymol have strong antioxidant activity and play an
important role in scavenging free radicals and peroxyni-
trite and inhibiting lipid peroxidation [42, 43]. The phen-
olic hydroxyl groups contained in carvacrol and thymol
can act as hydrogen donors to bind with peroxy radical
and block the oxidative chain reaction, thus preventing
and delaying lipid oxidation [44]. Carvacrol and thymol
are the main role in the antioxidant function in oragno
essienal oil [45], Our previous studies also found that diet-
ary supplementation with CB or oragno essienal oil had
antioxidant function in piglets [16], growing finishing pigs
[46], sows [47] and boars [48]. In addition, we also found
that the relative abundance of fecal Escherichia coli was
significantly reduced by dietary supplementation with CB.
Dietary supplementation with CB can reduce the relative
abundance of free radical producing bacteria such as
Escherichia coli in piglets’ intestines [16]. The deamination
of valine and leucine by bacteria produces isobutyric acid
and isoprene, which are the markers of protein fermenta-
tion [49]. Although high AA level had the tendency to in-
crease the fecal isoprene and total branched chain fatty
acids, but it did not increase diarrhea or damage the intes-
tinal health of weaned pigs. Therefore, dietary supplemen-
tation with CB improved intestinal permeability may be
related to alleviating oxidative stress in weaned pigs.

Conclusion
The improvement of dietary AA level mainly affected
the utilization of AA in early stage after weaning, and
improved the intestinal barrier function of weaned pigs,
which could alleviate diarrhea and promote the growth
of weaned pigs. Dietary supplementation with CB could
reduce the relative abundance of harmful bacteria and
improve the integrity of intestinal structure of weaned
pigs by reducing oxidative stress and inflammatory re-
sponse of the body, and then promoting the growth of
weaned pigs. The weaned pigs will reach the best growth
rate in 2 weeks after weaning by increasing the level of
dietary Lys at 1.5% and 1.4% together with supplementa-
tion with CB.
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